Total publications: 80
h-index 36 (Google Scholar)
Most Important Publications (Last 5 years) (* for corresponding author, 1 for co-first author)
1. Ji H., Du P., Zhao D., Li S., Sun F., Duin E., Liu W.* (2020) 2D/1D graphitic carbon nitride/titanate nanotubes heterostructure for efficient photocatalysis of sulfamethazine under solar light: Catalytic “hot spots” at the rutile–anatase–titanate interfaces. Applied Catalysis B: Environment, 263, 118357. (IF = 16.683, ESI Hot paper)
2. Ji H., Liu W.*, Sun F., Huang T., Chen L., Liu Y., Qi J., Xie C., Zhao D.* (2021) Experimental evidences and theoretical calculations on phenanthrene degradation in a solar-light-driven photocatalysis system using silica aerogel supported TiO2 nanoparticles: Insights into reactive sites and energy evolution. Chemical Engineering Journal, 419, 129605. (IF = 10.652)
3. Dang C.1, Sun F.1, Jiang H., Huang T., Liu W., Chen X., Ji H.* (2020) Pre-accumulation and in-situ destruction of diclofenac by a photo-regenerable activated carbon fiber supported titanate nanotubes composite material: Intermediates, DFT calculation, and ecotoxicity. Journal of Hazardous Materials, 400, 123225. (IF = 9.038)
4. Ji H., Wang T., Huang T., Lai B., Liu W.* (2021) Adsorptive removal of ciprofloxacin with different dissociated species onto titanate nanotubes. Journal of Cleaner Production. 278, 123924. (IF = 7.246)
5. Pan F.1, Ji H.1, Du P., Huang T., Wang C., Liu W.* (2021) Insights into catalytic activation of peroxymonosulfate for carbamazepine degradation by MnO2 nanoparticles in-situ anchored titanate nanotubes: Mechanism, ecotoxicity and DFT study. Journal of Hazardous Materials, 402, 123779. (IF = 9.038)
6. Li F.1, Duan J.1, Tian S.1, Ji H.1, Zhu Y., Wei Z.*, Zhao D.* (2020) Short-chain Per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chemical Engineering Journal, 380, 122506. (IF = 10.652, ESI Highly cited paper)
7. Ji H., Gong Y., Duan J., Zhao D.*, Liu W.* (2018) Degradation of petroleum hydrocarbons in seawater by simulated surface-level atmospheric ozone: Reaction kinetics and effect of oil dispersant. Marine Pollution Bulletin, 135: 427-440. (IF = 4.049)
8. Ji H., Xie W., Liu W., Liu X., Zhao D.* (2020) Sorption of dispersed petroleum hydrocarbons by activated charcoals: Effects of oil dispersants. Environmental Pollution, 256, 113416. (IF = 6.792)
9. Liu X.1, Ji H.1, Li S., Liu W.* (2019) Graphene modified anatase/titanate nanosheets with enhanced photocatalytic activity for efficient degradation of sulfamethazine under simulated solar light. Chemosphere. 233:198¬¬-206. (IF = 5.778)
10. Ma M., Chen L., Zhao J.*, Liu W., Ji H.* (2019) Efficient activation of peroxymonosulfate by hollow cobalt hydroxide for degradation of ibuprofen and theoretical study. Chinese Chemical Letters, 30(12): 2191-2195. (IF = 4.632)
11. Ji H., Zhu Y., Duan J., Liu W.*, Zhao D.* (2019) Reductive immobilization and long-term remobilization of radioactive pertechnetate using bio-macromolecules stabilized zero valent iron nanoparticles. Chinese Chemical Letters, 30(12): 2163-2168. (IF = 4.632)
12. Ji H., Zhu Y., Liu W., Bozack M.J., Qian T., Zhao D.* (2019) Sequestration of pertechnetate using carboxymethyl cellulose stabilized FeS nanoparticles: Effectiveness and mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 561:373¬¬-380. (IF = 3.990)
13. Hang T., Pan B., Ji H.*, Liu W. (2020) Removal of 17β-Estradiol by Activated Charcoal Supported Titanate Nanotubes (TNTs@AC) through Initial Adsorption and Subsequent Photo-Degradation: Intermediates, DFT calculation, and Mechanisms. Water, 12(8), 2121. (IF = 2.544)
14. Ji H., Qi J., Zheng M., Dang C., Chen L., Huang T., Liu W.* (2021) Application of nanotechnology for virus inactivation in water: Implications for transmission-blocking of the Novel Coronavirus SARS-CoV-2. Progress in Chemistry, (In press, IF = 1.013)
15. Guo D., Liu Y.*, Ji H., Wang C-C., Chen B., Shen C., Li F., Wang Y., Lu P., Liu W.* (2021) Silicate-enhanced heterogeneous flow-through electro-Fenton system using Iron oxides under nanoconfinement. Environmental Science & Technology, 55(6), 4-45-4-53. (IF = 7.864)